Identify the translation of the figure with the vertices P(βˆ’4,βˆ’5), L(1,βˆ’7), and K(βˆ’9,8), along the vector <βˆ’6, 3>.

Answers:
P β€²(βˆ’10, βˆ’2), L β€²(βˆ’5, βˆ’4), K β€²(βˆ’15, 11)
P β€²(2, βˆ’8), L β€²(7, βˆ’10), K β€²(βˆ’3, 5)
P β€²(βˆ’10, βˆ’8), L β€²(βˆ’5, βˆ’10), K β€²(βˆ’15, 5)
P β€²(2, βˆ’2), L β€²(7, βˆ’4), K β€²(βˆ’3, 11)

Respuesta :

Answer:

Pβ€Šβ€²(βˆ’10, βˆ’2), Lβ€Šβ€²(βˆ’5, βˆ’4), Kβ€Šβ€²(βˆ’15, 11)

Step-by-step explanation:

The translation vector, βŸ¨βˆ’6,3⟩, can be used to derive a rule for the translation of the coordinates: (x,y)β†’(xβˆ’6,y+3).

Apply the rule to translate each of the three preimage vertices to the image vertices.

P(βˆ’4,βˆ’5)β†’P'(βˆ’10,βˆ’2)

L(1,βˆ’7)β†’L'(βˆ’5,βˆ’4)

K(βˆ’9,8)β†’K'(βˆ’15,11)

Therefore, P'(βˆ’10,βˆ’2), L'(βˆ’5,βˆ’4), N'(βˆ’15,11) is the translation of the figure with the vertices P(βˆ’4,βˆ’5), L(1,βˆ’7), and K(βˆ’9,8), along the vector βŸ¨βˆ’6,3⟩.

Answer:

Pβ€Šβ€²(βˆ’10, βˆ’2), Lβ€Šβ€²(βˆ’5, βˆ’4), Kβ€Šβ€²(βˆ’15, 11)

Step-by-step explanation:

P(βˆ’4,βˆ’5)β†’P'(βˆ’10,βˆ’2)

L(1,βˆ’7)β†’L'(βˆ’5,βˆ’4)

K(βˆ’9,8)β†’K'(βˆ’15,11)

Therefore, P'(βˆ’10,βˆ’2), L'(βˆ’5,βˆ’4), N'(βˆ’15,11) is the translation of the figure with the vertices P(βˆ’4,βˆ’5), L(1,βˆ’7), and K(βˆ’9,8), along the vector βŸ¨βˆ’6,3⟩.